The complete impurity scattering formalism in graphene

نویسنده

  • Cristina Bena
چکیده

We present the complete formalism that describes scattering in graphene at lowenergies. We begin by analyzing the real-space free Green’s function matrix, and its analytical expansions at low-energy, carefully incorporating the discrete lattice structure, and arbitrary forms of the atomic-orbital wave function. We then compute the real-space Green’s function in the presence of an impurity. We express our results both in 2×2 and 4×4 forms (for the two sublattices and the two inequivalent valleys of the first Brillouin zone). We compare this with the 4 × 4 formalism proposed in Refs. [1, 2], and show that the latter is incomplete. We describe how it can be adapted to accurately take into account the effects of inter-valley scattering on spatially-varying quantities such as the local density of states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impurity-induced spin-orbit coupling in graphene.

We study the effect of impurities in inducing spin-orbit coupling in graphene. We show that the sp3 distortion induced by an impurity can lead to a large increase in the spin-orbit coupling with a value comparable to the one found in diamond and other zinc-blende semiconductors. The spin-flip scattering produced by the impurity leads to spin scattering lengths of the order found in recent exper...

متن کامل

Theory of charged impurity scattering in two-dimensional graphene

Wereview thephysics of charged impurities in the vicinity of graphene. The long-range nature of Coulomb impurities affects both the nature of the ground state density profile and graphene’s transport properties. We discuss the screening of a single Coulomb impurity and the ensemble averaged density profile of graphene in the presence of many randomly distributed impurities. Finally, we discuss ...

متن کامل

Impact of electron-impurity scattering on the spin relaxation time in graphene: a first-principles study.

The effect of electron-impurity scattering on momentum and spin relaxation times in graphene is studied by means of relativistic ab initio calculations. Assuming carbon and silicon adatoms as natural impurities in graphene, we are able to simulate fast spin relaxation observed experimentally. We investigate the dependence of the relaxation times on the impurity position and demonstrate that C o...

متن کامل

Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering

The transport properties of carriers in semiconducting graphene nanoribbons are studied by comparing the effects of phonon, impurity, and line-edge roughness scattering. It is found that scattering from impurities located at the surface of nanoribbons and from acoustic phonons are as important as line-edge roughness scattering. The relative importance of these scattering mechanisms varies with ...

متن کامل

Diffusive charge transport in graphene on SiO2

We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density (σ(n) ∝ n) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008